Car in a good shape needs regular services

ine lubrication systems. Surfaces in contact and relative motion to other surfaces require lubrication to reduce wear, noise and increase efficiency by reducing the power wasting in overcoming friction, or to make the mechanism

Car in a good shape needs regular services Mitsubishi smoking exhaust

Surfaces in contact and relative motion

Lubrication
Diagram of an engine using pressurized lubrication
Wikimedia Commons has media related to Internal combustion piston engine lubrication systems.

Surfaces in contact and relative motion to other surfaces require lubrication to reduce wear, noise and increase efficiency by reducing the power wasting in overcoming friction, or to make the mechanism work at all. At the very least, an engine requires lubrication in the following parts:

Between pistons and cylinders
Small bearings
Big end bearings
Main bearings
Valve gear (The following elements may not be present):
Tappets
Rocker arms
Pushrods
Timing chain or gears. Toothed belts do not require lubrication.


Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


Most truck and automotive diesel engines

Diesel cycle
Main article: Diesel cycle
P-v Diagram for the Ideal Diesel cycle. The cycle follows the numbers 1?4 in clockwise direction.

Most truck and automotive diesel engines use a cycle reminiscent of a four-stroke cycle, but with a compression heating ignition system, rather than needing a separate ignition system. This variation is called the diesel cycle. In the diesel cycle, diesel fuel is injected directly into the cylinder so that combustion occurs at constant pressure, as the piston moves.

Otto cycle: Otto cycle is the typical cycle for most of the cars internal combustion engines, that work using gasoline as a fuel. Otto cycle is exactly the same one that was described for the four-stroke engine. It consists of the same four major steps: Intake, compression, ignition and exhaust.

PV diagram for Otto cycle On the PV-diagram, 1?2: Intake: suction stroke 2?3: Isentropic Compression stroke 3?4: Heat addition stroke 4?5: Exhaust stroke (Isentropic expansion) 5?2: Heat rejection The distance between points 1?2 is the stroke of the engine. By dividing V2/V1, we get: r, where r is called the compression ratio of the engine.

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


Why have some means of transport?

Nowadays it is difficult to imagine life without the automotive industry. Public transportation, private cars and buses at the end of the truck the goods to any kind of shops are an integral part of our everyday life. Moving cars is very comfortable, so it's no surprise that it has now become almost necessary to lead a comfortable life element. Settlement of the simplest things in a quick way, or even trips on shorter routes are really enjoyable when you have your own car or motorcycle. For many people, the same drive various means of transport is a very nice feeling. Moreover, the use of buses or cars is sometimes necessary. Carrying heavy goods they are most often carried out also by means of heavy equipment moving on the roads.



© 2019 http://tunica.bydgoszcz.pl/